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Cost-effective Scheduling of Steel Plants with
Flexible EAFs

Xiao Zhang, Student Member, IEEE, Gabriela Hug, Senior Member, IEEE, Iiro Harjunkoski

Abstract—Electric arc furnaces (EAFs) in steel plants consume
a large amount of electric energy, and the energy cost constitutes
a significant proportion of the total costs in producing steel.
However, a steel plant can take advantage of time-based elec-
tricity prices by optimally arranging energy-consuming activities
to avoid peak hours. Besides, the EAFs’ power rate can be
adjusted by switching transformers’ taps, which offers additional
flexibility for arranging energy consumption and minimizing
the cost of electricity. In this paper, we propose scheduling
models based on resource-task network (RTN) formulations that
incorporate the EAFs’ flexibilities to reduce the electricity cost.
The effectiveness of the model is demonstrated in multiple case
studies.

Index Terms—Resource task network, mixed integer program-
ming, demand response, industrial load, steel manufacturing.

I. NOMENCLATURE

Variables
Ni,t binary variable indicating whether task i

starts at time slot t
Rr,t continuous variable representing the value of

resource r at time slot t
ΠEL,t continuous variable representing the energy

usage (MWh) of the entire plant at time slot t
Sh,t, Ph,t (in model Flex) the melting status (on/off) and

melting power (MW) of heat h at time slot t
Parameters
τi the length (in time slots) of task i
wi,Wi the time bounds (in time slots) of transfer i
µr,i,θ the interaction quantity between task i and

resource r at the θ-th time slot since
the start of task i

δ the duration (minutes) of every time slot
pricehr the hourly electricity price ($/MWh)
m ∈Mh (in model Modes) the index indicating

different melting modes
Subscripts (tasks and resources)
iEh

the processing task of heat h in stage EAF
iCg,u the casting task of group g by caster u
iEAh

the transfer task between stages EAF and AOD
EAsh, EA

d
h the intermediate product resource between

EAF and AOD (s: at source, d: at destination)
EAF the equipment resource in stage EAF
EL the electricity resource
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II. INTRODUCTION

Demand response (DR) or demand side management (DSM)
is a popular topic that has been widely discussed and studied
in recent years. It has been shown that the flexibility of
loads can be used to provide valuable services to the electric
power system [1]–[4]. Hence, electricity providers may offer
economic incentives to encourage consumers to change their
electricity usage behavior, and thereby help maintaining the
supply-demand balance. This is particularly interesting for
industrial plants for which the electricity cost constitutes a
significant part of their operating costs. For example, they are
able to reduce their electricity cost by shifting their consump-
tion according to time-based energy prices. This on the other
hand is beneficial for the power grid as it helps mitigating
daily supply and transmission bottlenecks and slowing down
the needs for constructing more generation capacity.

A recent study [5] investigated the potential of DSM for
power-intensive industries such as electric arc furnaces, alu-
minum electrolysis, and cement milling in electricity markets
in Germany, concluding that these industries potentially have
significant impacts on electricity markets. In [6] and [7], the
role of the industrial sector, also including food processing
plants and greenhouses, in demand response is discussed.
In [8], [9], the chemical engineering community has presented
scheduling methods for industrial plants taking into account
time-based energy prices. The result is that the electricity-
intensive production activities are optimally arranged to min-
imize electricity costs. In addition to adjusting consumption
according to price, the industrial plants can also make profits
by providing ancillary services [10]–[12], such as spinning
reserve that helps the power system operator to handle unex-
pected outages and regulation that compensates for minute-to-
minute load fluctuations.

Industrial plants constitute a great portion of the total load.
Compared to other loads such as buildings and residential
areas [13], [14], industrial loads as demand response resource
have the following advantages: the magnitude of power con-
sumption by an industrial plant and the change in power it
can provide are generally very large [15]; besides, the infras-
tructures for control, communication and market participation
which enables demand response usually already have been
installed at the plants; even more important, some industrial
plants are able to offer fast and accurate adjustments in their
power consumption [16], [17]; moreover, the industrial plants
are generally more economically motivated to participate ac-
tively as demand response resource. However, the industrial
processes such as steel manufacturing are generally complex
to schedule, which needs to be addressed for these plants to
actively take part in demand response.
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Electric arc furnaces (EAFs) in steel manufacturing plants
are identified as having great potential for demand side
management, since these furnaces not only consume large
amounts of electric energy, but they operate in batch mode
and are also fairly flexible in terms of changing their power
consumption rate [5]. The EAFs are powered by transformers
and their power consumption rate can be changed very quickly
by adjusting the settings of the on-load tapchangers (OLTC).
The objective for the optimal scheduling of steel plants has
traditionally been to minimize the make-span, i.e. to produce
as fast as possible to make the most utilization of the heavily
invested facilities. However, in recent years the participation
of steel plants in demand side management has been studied
with a variety of emphases, such as peak load management
[18], prespecified energy curve tracking [19], and electricity
fee minimization [20], [21]. Meanwhile, it is recognized that
steel plant scheduling is one of the most difficult industrial pro-
cesses for scheduling, as steel manufacturing is a large-scale,
multistage, multiproduct batch process which involves parallel
equipment and critical production-related constraints [22]. A
widely used technique to model and optimize the scheduling
of such plants is resource-task network (RTN). The RTN
modeling framework is able to explicitly represent the com-
plex chemical processes in a systematic way, especially for
processes with multiple stages and critical production require-
ments.

In this paper, we extend the RTN models in [20] to study
the minimization of electricity cost for steel plants. Instead of
merely shifting the tasks to time periods with cheaper electric-
ity, we also integrate the furnaces’ capability of adjusting the
OLTC setting and thereby the instantaneous melting power
rate. In this way, the steel plant gets more ”flexibility” in
arranging the production activities and reducing the electricity
bill. With the word ”flexibility” we refer to the ability of the
steel plant to adjust its load curve in response to the electricity
price curve: the more flexibility it has, the better it can adjust
its load curve and save more money. Note that frequent
switching at high currents potentially reduces the lifetime
of the OLTCs. The benefit and cost analysis for switching
OLTCs should be taken in a long time scale (e.g. several
years) with a variety of practical considerations including the
lifetime, expenditure and operational properties of the OLTCs,
the sale price and yearly throughput of the final product, etc.
In this paper, we provide an approach to optimize the benefits
achieved, neglecting the lifetime reduction because this would
require significant amounts of additional data which is beyond
the scope of this paper.

The main contribution of this paper is the modeling of
the steel plant enabling optimal scheduling with controllable
transformers on the electric arc furnaces. Previous work has
been devoted purely to optimally scheduling the tasks without
consideration of such flexibilities within the tasks. Taking
these flexibilities into account, however, increases the com-
putational complexities of the scheduling problem which are
addressed in this paper using a newly introduced modeling and
solution approach. An additional contribution is the analysis of
a typical steel plant that demonstrates the benefits achieved by
controlling the OLTCs of these transformers. The remaining

paper is organized as follows: Section III first describes the
steel manufacturing and its ability to respond to time-based
electricity prices, then proposes to solve the scheduling prob-
lem of the steel plant by RTN formulations. Section IV reviews
the RTN model that minimizes energy cost only by shifting
production tasks. Sections V and VI propose RTN models
that take into account the EAFs’ flexibilities in adjusting the
power consumption rate to better respond to the variations in
electricity prices. The effectiveness of the proposed models
are demonstrated by case studies in Section VII. Section
VIII draws the conclusion of this study and describes future
research directions.

III. PROBLEM STATEMENT AND SOLUTION METHOD

The typical process of steel production is illustrated in
Fig. 1. Solid metal scrap (from recycled steel such as discarded
cars) is first molten in the electric arc furnace (EAF), then fur-
ther processed in the argon oxygen decarburization unit (AOD)
to reduce the carbon content. The molten steel is then refined
in the ladle furnace (LF) and finally transported in ladles to
the continuous casters (CC) to be casted into slabs - the final
products of the steel manufacturing process. The steel can be
characterized by grade, slab width, and thickness. Different
kinds of products require different chemical ingredients and
different casting procedures.

The first three processing stages operate in batch mode
which means that a specified amount of metal is processed at a
time. Each such amount of metal is called a heat. Meanwhile,
the casting stage operates continuously and has some critical
processing constraints. Due to the extreme conditions in the
caster, it can only process a limited number of heats, after
which it needs maintenance such as changing the caster mold
and tundish before further operation. Several heats sharing
the same or very similar grade characteristics and shape
requirements form a campaign (a group of heats) and are
casted sequentially. The method for forming casting campaigns
is proposed and discussed in [22], and in this paper we assume
the campaigns have already been formed. The casting order
should follow certain rules and the casting sequence for the
heats within one campaign must not be interrupted.

The steel manufacturing plant considered in this paper has
parallel units for each of the four stages but the proposed
methods can also be applied to a plant with any number
of units and any number of stages. It is assumed that the
processing abilities of the units for the first three stages are
almost the same, i.e. the equipment units in the same stage
have the same power consumption and the same processing

Fig. 1: Production process of steel manufacturing [20]
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Fig. 2: Resource task network for basic scheduling of a steel plant.

time for each heat. Thus, the parallel units for the first
three stages are assumed identical to simplify the problem.
In contrast, casters need to be considered individually due to
their different processing and setup times, and all the heats
belonging to the same campaign group should be processed
in the same caster sequentially.

In EAF-steel manufacturing, most of the electric energy
is consumed by the furnaces in the melting stage. Hence,
adding flexibility to the power consumption of this stage has
the highest impact on the overall electricity cost. In existing
steel plant scheduling literature like [20], the EAFs’ power
consumption rate and processing time are treated as constant
parameters, and only the starting times of the melting tasks
are moved in time to provide operational flexibility. However,
according to practical operation, it is also possible to adjust the
furnaces’ power consumption rate very quickly by controlling
the OLTC, which gives opportunities to further increase the
flexibility of the steel plant’s energy management. Hence, our
goal is to incorporate this flexibility into the RTN model and
exploit it to further reduce the electric energy cost of the steel
manufacturing plant.

For the scheduling problem in this paper, we make the
following assumptions about EAF’s flexibility:
• the EAF can change its hourly energy consumption

within given bounds without losing melting efficiency
(tons of output per MWh of electricity) or jeopardizing
operational safety.

• the total energy required for melting each heat is fixed,
given by the product of nominal power and nominal
processing time.

• the actual processing time depends on the actual power
consumption and may vary within a given bound.

We address the scheduling problem by using a discrete-
time RTN formulation. The RTN model involves two types of
nodes: resources and tasks. The resource nodes represent all

entities that are relevant to the process such as raw materials,
intermediate and final products, equipment, and utilities. The
task nodes include all tasks that take place during the pro-
duction, such as a chemical process or the transportation of
material. The task can change the amount of the product in a
resource node and/or the status of the equipment (occupied or
available). Resources are necessary to promote state changes
or tasks’ execution. For example, a certain task can only start
if there is enough input material and equipment available.
The network connecting these two types of nodes and the
interaction parameters on the network describe the detailed
interactions between resources and tasks.

The main difficulty of industrial scheduling problems arises
from the large number of discrete variables in the model. For
example, several thousands of binary variables are needed to
denote the start of the tasks in a practical steel plant scheduling
problem. Generally speaking, a more rigorous model which
represents the process more accurately requires a larger num-
ber of variables, resulting in an optimization problem which
is difficult to solve. Among the RTN models presented in
[20], the Aggregated Equipment Resource and Simple Transfer
Tasks (Basic RTN) model is the best selection for electric-
ity cost minimization because of the reduced computational
complexity and the negligible differences in the final solution
compared to the solutions of more rigorous models which
take a significantly longer time to run. We briefly provide an
overview of this model in the next section and then present
the extension to include the flexibility provided by OLTCs.

IV. BASIC RTN

The Basic RTN model optimizes the electricity cost by
shifting the time of production activities. Thereby, the EAF
melting power is always equal to the equipment nominal
value. The parallel units for the first three stages are assumed
identical, while the casters are considered individually because
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different casters are designed for casting specific products. The
model also overlooks the differences in transfer times between
units from two successive stages: parallel units in the same
stage might be located far away from each other, so that the
transportation time between successive stages actually depends
on the exact locations of the specific unit u in the previous
stage and the unit u′ in the next stage; the transportation time
also depends on the transportation mode, e.g. by train or by
crane. For instance, if there are 3 units for the first stage and
4 units for the second stage, then there are at least 12 possible
transportation times. The Basic RTN assumes the transfers are
independent of the units’ locations, which is a simplification
that might lead to an under- or over-estimation of the actual
transfer time. With these assumptions, the Basic RTN achieves
a relatively simple model with fast computation and reasonable
results.

A. Resource Task Network

The Basic RTN is illustrated in Fig. 2. The tasks considered
are the four main production stages, i.e. melting in the EAF,
decarburization in the AOD, refining in the LF, and casting in
the CC, as well as the transfer tasks between the stages.

Each task is indexed by i and the binary variable Ni,t
assigns the start of task i to time point t, i.e. Ni,t = 1 indicates
that task i begins at time slot t. For the operational tasks of
the first three stages and all the transfer tasks, there is one task
for every heat h. For instance, if there are H heats that have to
be produced, then we have H melting tasks to schedule: one
melting task per heat. The tasks for the first three stages are
therefore denoted by iEh

, iAh
, and iLh

, respectively. Similarly,
we denote the transfers by iEAh

, iALh
, and iLCh

.
Unlike the first three stages where we do not distinguish

between parallel units, the casters are treated individually.
Hence, we need to assign each casting job to a specific caster.
A casting task is denoted by iCg,u

with a pair of indices (g, u),
where g stands for the casting campaign group and u stands for
a specific caster. This is because task iCg1,u1

is different from
task iCg1,u2

, e.g. these two tasks’ durations are not equal due
to the different setup times of the two individual casters. So,
we have to consider both iCg1,u1

and iCg1,u2
in the problem

formulation in order to take into account all possible caster
assignments. Of course, casting g1 will be assigned to just
one caster. Consequently, only one of these two tasks will be
scheduled, while the other one never takes place.

The transfer task is forced to be executed immediately after
the completion of its preceding processing task, which is
generally required in the steel manufacturing process. While
on the other hand, after transferred to the next stage, heats
may need to wait before the following processing step for the
equipment to become available or for lower electricity prices.

The resources considered are equipment, electricity, inter-
mediate products, and final products. As the intermediate
products are transferred from one stage to the next, each
intermediate product needs to be associated with the location
where this heat of metal currently is. For example, EAdh
denotes the intermediate product of the specific heat h located
at the transfer destination (superscript d), i.e. the inlet of

AOD, which is waiting to be processed by AOD; while EAsh
denotes the same intermediate product located at the transfer
start (superscript s) which is waiting to be transferred. The
sets of resources considered in the model are processing units
(EAF , AOD, LF , and CC), electric energy (EL), inter-
mediate products (EAs, EAd, ALs, ALd, LCs, and LCd),
and final product (H). Nonnegative continuous variables Rr,t
represent the value of resource r (∀r 6∈ EL) at time t. For
instance, REAF,t = 1 means there is one EAF available at
time slot t. Nonnegative continuous variables ΠEL,t are used
to summarize the energy usage over all tasks in time slot t.

The network flowchart in Fig. 2 indicates how each task
interacts with each resource. Processing tasks interact with
electricity resources continuously, but interact with other re-
sources discretely. Continuous interaction means that the task
consumes or generates the resource continuously during the
processing time of the task. For example, for simplification
we assume that the melting task consumes electric energy
continuously during the entire task. While discrete interaction
means that the interaction only takes place at very distinct time
points during the task. For example, the melting task occupies
one EAF at the very beginning of the task and only returns
the EAF at the end of the melting process. The melting task
may last for several time slots, but it only interacts with the
resource EAF in two time slots.

The detailed interactions are described by interaction pa-
rameters. Interaction parameter µr,i,θ quantifies how much of
resource r is consumed or generated by task i at the relative
time slot θ - the time slot that is θ slots after the start of
task i. The interaction parameters for the melting task with
its interactive resources are illustrated in Fig. 3. There are
three different time references: Time stands for the actual
hour of the day; t is the index for the uniform time grid;
the relative time index θ is related to the start of the task.
Discrete-time formulation assumes that the task can only start
at the beginning of the time slot, but can end anywhere
within the time slot. The slots’ width of the time grid in
Fig. 3 is δ = 30 minutes. The time duration for melting
is assumed to be 80 minutes. Hence, the melting spans 3
(d80/30e) time slots. Note that the melting is completed before
the last time slot ends. This rounding error due to discrete-
time formulation might underestimate the potential flexibility
gained from rescheduling. Using a finer time grid can alleviate
this issue but increases the computational complexity.

In Fig. 3, we assume that the melting task of heat h, iEh
,

starts at t = 3. This task interacts with resources EAF , EL,
and EAsh. At the very beginning, the task reduces EAF by
one as it uses the operation unit; after the completion of the
melting process, EAF is increased by one as the EAF is freed
up. Also, EAsh is increased by one to promote the execution
of the following transfer; the melting consumes electric energy
continuously during its entire duration. Note that the energy
consumption of the last melting time slot is less than the
previous slots because the task actually completes before the
end of that slot.
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Fig. 3: Illustration of interaction parameters for a melting task.

B. Mathematical Formulation

In this section, we use the RTN model, formulate the depen-
dencies mathematically and integrate it into an optimization
problem to determine the daily schedule of a plant. The
objective is to minimize the electricity cost, and the time-
based electricity prices are assumed to be known ahead of
time. In a time-of-use (TOU) pricing system, these hourly
prices can be obtained easily; in a wholesale market, price
forecast methods [23], [24] can be utilized to provide the
forecast prices as the price signal for our model; in a tiered
pricing system, we need to design an objective function with
the detailed parameters in the tiered pricing. Since this paper
is the first step in motivating these industrial loads to actively
participate in demand/supply balancing and its focus is on
modeling and optimization, we assume the price signal is
known. The formulations in this section are based on [20],
and have been updated for simplified presentation.

1) Resource Balance: Resource evolution over the time
horizon is managed by the excess resource balance, as in

Rr,t = Rr,t−1 +
∑
i

τi∑
θ=0

µr,i,θNi,t−θ +πr,t ∀r 6∈ EL, t (1)

in which the value Rr,t of resource r at time slot t is
equal to its previous value at t −1 adjusted by the amounts
generated/consumed by all relevant tasks. The above constraint
applies to all the resources described in Section IV-A except
for the electricity resource.

Nonzero interaction parameters µr,i,θ imply interaction and
task i only interacts with resource r when the task is ongoing.
In other words, the interaction takes place at time slot t only if
the task i starts θ earlier than t (Ni,t−θ = 1) with θ being less
than τi - the duration of task i. Equipment maintenance can be
modeled by adding parameters that influence the excess value
of equipment in the balancing equation. For example, adding
πCC1,5 = 1 on the right side of (1) means caster CC1 needs
to be maintained and cannot be used at time slot 5.

Meanwhile, the electricity usage is calculated as

ΠEL,t =
∑
i

τi∑
θ=0

µEL,i,θNi,t−θ ∀t (2)

where ΠEL,t is equal to the electric energy usage by all
possible tasks at time slot t; the right side of (2) first sums
over all tasks and then for each task, it sums over all possible
starting times of task i for which task i would still be running
at time t.

2) Task Execution: Operational constraints (3), (4), and (5)
are used to ensure that tasks are executed the proper number
of times. The constraints∑

t

NiEh
,t = 1 ∀h∑

t

NiAh
,t = 1 ∀h∑

t

NiLh
,t = 1 ∀h

(3)

ensure that all heats are processed only once by the first three
stages. For the casting stage, we distinguish between individual
casters and we need to assign one caster for each job. If we
have C individual casters and G groups of heats, then the
number of possible casting tasks is C×G. But not all casting
tasks are actually being executed. Each group of heats should
be executed only once by any unit u from the available casters
CCs. This is reflected in the following constraint∑

u∈CCs

∑
t

NiCg,u ,t
= 1 ∀g (4)

Similarly, the intermediate products should only be transferred
once between each of the stages, as defined by∑

t

NiEAh
,t = 1 ∀h∑

t

NiALh
,t = 1 ∀h∑

t

NiLCh
,t = 1 ∀h

(5)

3) Transfer Time: The transfer task is forced to be executed
immediately after the completion of its preceding processing
task, which is common in the steel manufacturing process.
This requirement is embodied by enforcing

REAs
h,t

= 0 ∀h, t
RALs

h,t
= 0 ∀h, t

RLCs
h,t

= 0 ∀h, t
(6)

The variable REAs
h,t

is either 0 or 1, and if it is equal to 1,
then it indicates that the intermediate product EAsh is waiting
at time slot t. The above constraint requires that there is
no waiting time for any of the intermediate products with
superscript s.

The transfer time of the intermediate products are assumed
to be wEA, wAL, and wLC , which are independent of the
specific heats and the operation units. The maximum allowable
transportation time WEA, WAL, and WLC are also defined
which makes sure that the cooling effect during transportation
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does not adversely affect the processing of each heat in the
next stage, as the products’ quality may be compromised
by low temperature and would have to be compensated by
expensive reheating. The transfer time constraints are therefore
given by

δ
∑
t

REAd
h,t

+ wEA ≤WEA ∀h

δ
∑
t

RALd
h,t

+ wAL ≤WAL ∀h

δ
∑
t

RLCd
h,t

+ wLC ≤WLC ∀h

(7)

in which δ is the time slot width. The
∑
tREAd

h,t
is the

total time slots that intermediate product EAh waits before
entering into the next stage. The constraint states that for each
intermediate product, the transfer time plus the waiting time
should be upper bounded to prevent adverse cooling effects.

4) Product Delivery: The final products should be deliver-
able by the end of the time horizon, which is enforced by

RHh,T = 1 ∀h (8)

in which T is the last time slot of the time horizon.
5) Objective: The overall objective of the optimization is

to minimize the total energy cost as given by

min
∑
hr

pricehr
∑
t∈Thr

ΠEL,t (9)

The hourly electricity prices pricehr are given as inputs and
Thr is the set of time slots in hour hr. Here it should be noted
that while we only optimize the electricity costs, all other
production requirements are enforced through constraints.

V. MULTIPLE MODES MELTING

In the following, we integrate the flexibility of EAFs
provided by the controllability of the transformer taps into
the model described in the previous section. In this section,
we limit such flexibility by making the following modeling
assumptions:
• the OLTC setting and therefore the melting power for

each heat can be chosen from a set of modes. This setting
does not change until the melting of this heat completes.

• for each of these modes, the melting task of each mode
fully spans the entire required time slots.

The second assumption makes it convenient to consider ancil-
lary services such as spinning reserve for future research, as it
has to be guaranteed that the service can be provided during
the entire time slot.

A. Resource Task Network

Suppose the nominal melting power of the EAF is P . We
assume that the melting power can be adjusted between PL

and PU from its nominal value P . Note that P , PL and PU ,
as parameters of the EAF, are the same for all the heats. While
on the other hand, suppose the nominal melting time for heat
h is wh, which depends on the specific heat. Then according
to the nominal case, the electric energy needed to melt heat h
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Fig. 4: Melting in stage EAF with 3 modes.

is equal to wh ·P , and we assume that this amount of energy
does not change when we adjust the melting power between
PL and PU . Hence, the melting time of heat h is bounded
between wLh = whP/P

U and wUh = whP/P
L. The time slots

spanned by the melting task of heat h is then bounded by
τLh = dwLh /δe and τUh = bwUh /δc1. We assume that we can
change the OLTC settings so that the melting time of heat h
is τmδ, where τm is a integer between τLh and τUh , and the
corresponding melting power is Pwh/(τmδ). In other words,
there are Mh = τUh −τLh +1 melting modes to choose from. For
each mode, the melting duration τm is known, then the melting
power and the OLTC setting can be calculated accordingly. In
the example illustrated in Fig. 4, processing heat h in stage
EAF has three melting options, i.e. power consumption rates
at 60, 50, and 40 MW and lasting for 50, 60, and 75 minutes,
respectively; the updated RTN graph for the modes modeling
is displayed in Fig. 4b. Note that the areas under these three
lines are the same and are equivalent to the total energy
needed for melting the steel scrap. With the extra flexibilities
given by the modes modeling, the plant operator can choose
among different power consumption curves therefore has more
options in minimizing its energy cost as well as helping the
power grid to balance demand and supply.

Unlike the Basic RTN in the previous section, the melting
tasks in the Multiple Modes Melting are denoted by iEh,m

in which h stands for the heat and m represents the melting
mode. Hence, we have increased the number of tasks compared
to the Basic RTN. The resources and the interaction parameters
are still the same, except that we now need to update the

1Generally dwL
h /δe is smaller than bwU

h /δc; if not, try to reduce the value
of δ or formulate the melting modes differently.
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interaction parameters for each melting task iEh,m
.

B. Mathematical Formulation

The formulations (1) - (9) still apply, except that the
melting execution constraint in (3) needs to be replaced by
the following constraint which incorporates the choice of the
melting mode.

1) Melting Mode Choice: Only one mode should be chosen
for melting each heat h, i.e.

Mh∑
m=1

∑
t

NiEh,m
,t = 1 ∀h (10)

hence, only one iEh,m
from all possible modes m =

1, · · · ,Mh should actually take place.
2) Demand Charge: As mentioned above, the objective

for the Multiple Modes Melting is still the minimization of
the total energy cost as given in (9). However, the modeling
methods proposed in this paper are also able to consider the
peak demand charge if that is being imposed. In order to
take the peak demand into account, we can add a continuous
variable P k to denote the peak demand over the considered
horizon, and then we can include this peak demand P k in
the minimization objective with the penalty price, pricedc
($/MW), as its coefficient. Since we already have the energy
usage ΠEL,t for every time slot, we can model the peak
demand through the following constraint (given that we are
minimizing P k):

P k ≥ ΠEL,t/δ ∀t (11)

in which δ is the length of the time slot. In the objective
function, we add the term pricedc · P k to reflect the demand
charge [25]. In the short-term scheduling problems considered
in this paper, the plants optimize over a single day whereas
demand charges are usually only charged for the one single
maximum power consumption over the entire month. We can
take this into account by setting the lower bound of P k to
be P kmax, with P kmax being a constant equal to the maximum
power so far over all days in the ongoing month. The demand
charge discussed here applies to all the three models presented
in this paper.

VI. ARBITRARY FLEXIBLE MELTING

In this section, we further extend the EAFs’ flexibility.
Compared with Section V, here the EAFs are even more
flexible by making the following assumption:
• the transformers’ OLTC setting can be adjusted for every

single time slot, thus the EAF power rate can change
during the melting of each heat.

A. Resource Task Network

The consequence of allowing for adjustment of the melting
power during the melting process is that the time duration
of melting is not directly associated with a given melting
power any more, but generally varies between τLh and τUh .
This means that we need extra variables to denote the end of
the melting tasks. However, since the heats are still required

Fig. 5: Illustration of interaction parameters for a melting task
for arbitrary flexible melting.

to be transferred immediately after having been processed, the
end of the melting equals the start of the succeeding transfer.
Thus, we use iEAh

to denote the end of melting.
Furthermore, since the power consumption rate of the melt-

ing process is assumed to be adjustable, we cannot connect
the melting task to the electric energy resource by fixed
parameters. Hence, we introduce variables Ph,t to denote the
melting power of the melting task for heat h at time slot t.
Accordingly, we remove the connection between the melting
task and the electricity resource, which means that ΠEL,t now
only sums the energy consumption for the last three stages.
The updated interaction parameters are illustrated in Fig. 5.
Note that resource EAF interacts with both the melting task
and the transfer task. The other tasks and resources remain the
same as in Section IV.

B. Mathematical Formulation

Equations (1)-(8) still apply except for the parameter up-
dates. In addition, we need the following constraints to enable
the flexible scheduling.

1) Melting Duration Bounds: All melting tasks should be
completed within given bounds, i.e.

t+τU
h∑

t′=t+τL
h

NiEAh
,t′ ≥ NiEh

,t ∀h (12)

Keep in mind that the start of the transfer equals the end of
melting. Hence, the equation states that if melting task iEh

starts at time slot t (NiEh
,t = 1), then the transfer iEAh

must
start between time slots t+ τLh and t+ τUh .

2) Melting Power Bounds: The melting power rate of the
EAFs are constrained by the lower and upper bounds PL and
PU as defined by

PL · Sh,t ≤ Ph,t ≤ PU · Sh,t ∀h (13)

where Sh,t is the melting status: Sh,t = 1 indicates the melting
of heat h is taking place during t; Sh,t = 0 indicates that heat
h is not in the melting stage at time t.
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Fig. 6: Relation of melting status, start of melting and transfer.

3) Melting Status Evolution: The melting status evolves
according to

Sh,t − Sh,t−1 = NiEh
,t −NiEAh

,t (14)

with initial condition Sh,0 = 0. The evolution of the variables
and their dependencies are visualized in Fig. 6: a change in
the melting status is initiated by the start of the melting task
and the start of the transfer. It is also worth to emphasize
that variable Sh,t is modeled as continuous variable to reduce
the computational burden, but constraint (14) ensures it to be
binary if all the other constraints hold.

4) Melting Energy Requirement: The total energy needed
for melting heat h is assumed constant and can be calculated
according to the nominal case. It is enforced by including the
following constraint∑

t

Ph,t · δ = P · wh (15)

which states that the summation of the consumed energy over
the time horizon is equal to the product of nominal power and
nominal melting time.

5) Objective: Again, the objective is to minimize the total
energy cost which is now defined as

min
∑
hr

pricehr
∑
t∈Thr

(ΠEL,t +
∑
h

Ph,t · δ) (16)

As stated in Section VI-A, ΠEL,t only sums the last three
stages’ energy usage, the melting energy usage, i.e. Ph,t times
the duration δ, needs to be considered additionally in the objec-
tive function. The scheduling model in this section minimizes
the objective function (16) while subject to constraints (1)-(8)
and (12)-(15).

VII. CASE STUDY

In this section, we carry out case studies to demonstrate the
effectiveness of the proposed models. We consider the daily
scheduling problem for an electric arc furnace steel plant.

A. Problem Parameters

The layout of the steel plant and the corresponding parame-
ters are taken from the example in [20]. In particular, the plant
considered has two EAFs, two AODs, two LFs and two CCs.
Each heat belongs to a particular casting campaign group as
given in Table I. The nominal power consumptions are pro-
vided in Table II, where the power consumption is independent
of the specific heat. The nominal processing times are shown
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Fig. 7: Hourly electricity price [20]

in Table III, where different heats require different processing
times. Combining Table II and III, we observe that around
90% of the total electric energy consumption takes place at
EAFs. The transfer times wEA, wAL, and wLC are 10, 4, and
10 minutes for the three between-stage transfers successively;
the maximum waiting time WEA, WAL, and WLC are 240,
240, and 120 minutes, which are higher than practical values
but help to provide more flexibilities in scheduling for testing
purpose. The caster setup times are 70 minutes for CC1 and
50 minutes for CC2. The hourly-based electricity prices are
given in Fig. 7. Recall that in a wholesale market, a price
forecast is needed to provide the expected hourly prices. Note
that the first hour in Fig. 7 is not necessarily 00:00-01:00 in the
day, as we need to consider workers shift time and products’
due time; that is why the hourly electricity prices are lower
during the middle of the time horizon. Generally speaking, the
larger the difference between peak price and non-peak price,
the more benefits our methods bring to this industrial load.

For scheduling with flexible EAFs, the melting power rate
are assumed to be adjustable between 75% to 125% of the
nominal value. The melting times are changed accordingly, e.g.
the heats with nominal processing time equaling 80 minutes
now can be melted by a duration between 64 minutes and
106.7 minutes. With this assumption, the steel plant can obtain
an extra flexibility of 80 MW (80MW·50% · 2) for the hours
when both furnaces are operating. The required energy for
melting each heat is set as the product of the nominal power
multiplied by the nominal processing time. In the simulations,
we do not take demand charges into account because, as
already mentioned, the case study spans one day which is the
most reasonable time range for this application given the need
for price predictions and also for practical operational reasons.
Meanwhile, it can be assumed that for the majority of the
months, the demand charges are equal to the demand charge
price times the plant’s power capacity, i.e. the total power
consumption of all the equipment. This is because a well
utilized plant often needs to use all the equipment concurrently.

TABLE I. Steel heat/group correspondence [20]

group g G1 G2 G3 G4 G5 G6

Hg H1−H4 H5−H8 H9−H12 H13−H17 H18−H20 H21−H24

TABLE II. Nominal power consumptions [MW] [20]

dh,u EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

powerh,u 85 85 2 2 2 2 7 7
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TABLE III. Nominal processing times [min] [20]

dh,u EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

H1−H4 80 80 75 75 35 35 50 50
H5−H6 85 85 80 80 40 40 60 60
H7−H8 85 85 80 80 20 20 55 55
H9−H12 90 90 95 95 45 45 60 60
H13−H14 85 85 85 85 25 25 70 70
H15−H16 85 85 85 85 25 25 75 75
H17 80 80 85 85 25 25 75 75
H18 80 80 95 95 45 45 60 60
H19 80 80 95 95 45 45 70 70
H20 80 80 95 95 30 30 70 70
H21−H22 80 80 80 80 30 30 50 50
H23−H24 80 80 80 80 30 30 50 60

B. Scheduling Results

The optimal scheduling results of the three RTN models
described above are given in Table IV. Different numbers of
heats for daily scheduling are considered to simulate different
production profiles for the steel plant. The more heats, the
higher is the productivity of the plant, i.e. the higher is the
amount of manufactured steel, but the less is the flexibility
due to reduced free capacity. Obviously, model complexity
and computation difficulty are directly related to the number of
heats. Generally speaking, a larger number of heats to produce
results in a more complex scheduling problem which is more
difficult to solve, as the problem size depends on the number
of heats. In Table IV, the column Heats lists the number
of heats; the column Model compares the three models in
which Basic stands for Basic RTN, Modes for Multiple Modes
Melting, and Flex for Arbitrary Flexible Scheduling; the next
three columns list the problem size - the number of binary
variables, the number of total variables, and the number of
constraints; the column MIP presents the final integer objective
function value - the value of the objective function with the
final integer (feasible) solution; the column GAP displays the
relative objective gap, which is the relative distance between
the best integer objective (by a feasible integer solution) and
the objective of the best bound remaining (not necessarily an
integer solution); the column CPU gives the final computation
time by the solver. The maximum computation time is set
to 7200s and the relative optimality tolerance is 10−6. All
of the models are implemented in Matlab and are solved by
TOMLAB/CPLEX on a linux 64 bit machine.

From the results, we make the following observations:

• The flexibility increases the computation difficulty. For
most cases, the computation times for Modes are larger
than Basic. For Heats = 12, 17, 20, the Flex model does
not converge to the optimal integer solution within two
hours of computation.

• The flexibility reduces the electricity cost. For all cases,
the final objective values of Modes are less than Basic.
For Heats = 4, 8, 12, 17, the Flex model achieves the
best integer solution; for Heats = 20, 24, the Flex model
does not perform better than Modes due to computational
difficulties.

The computation difficulty arises from the model’s complexity:
a large number of extra variables and constraints are needed
to represent the EAF’s flexibilities for the model Flex.

TABLE IV. Energy cost minimization with δ = 15min

Heats Model # bin # var # con MIP(k$) GAP CPU(s)

4 Basic 2496 6048 3397 26.239 0 0.3
Modes 3264 6816 3397 25.972 0 0.3
Flex 2496 6816 4917 25.858 0 1.7

8 Basic 4992 11232 6122 60.173 0 0.8
Modes 6528 12768 6122 57.501 0 1.1
Flex 4992 12768 9162 57.332 0 31.1

12 Basic 7488 16416 8847 104.301 0 2
Modes 10176 19104 8847 100.061 0 24
Flex 7488 18720 13407 99.990 1.97% 7200

17 Basic 10560 22848 12253 171.615 0 4
Modes 14208 26496 12253 159.454 0 170
Flex 10560 26112 18713 160.896 3.72% 7200

20 Basic 12480 26784 14297 222.427 0 9
Modes 16704 31008 14297 204.611 0 37
Flex 12480 30624 21897 211.459 9.00% 7200

24 Basic 14976 31968 17022 299.782 0 320
Modes 19968 36960 17022 277.283 0 83
Flex 14976 36576 26142 287.077 11.36% 7200

Fig. 8: Equipment occupancy for 24 heats.

The equipment occupancy charts for scheduling 24 heats
by models Basic and Modes are displayed in Fig. 8, in which
different heats are represented by different colors. We can
observe that the solution is valid: each heat is processed
sequentially by all four stages; each group of heats form a
campaign and are casted continuously; there is no conflict in
equipment assignment, i.e. each equipment is occupied by one
single task for every time slot. It also demonstrates that the
RTN model is able to generate detailed and practical schedules
which can be clearly understood by the steel plant operators.
Besides, compared with the scheduling results by the model
Basic, the melting durations according to the model Modes
are shorter, and the melting schedule wisely skips the locally
high price in hour 5.

The hourly energy consumptions corresponding to the opti-
mal schedule of 12 heats from the three models are compared
in Fig. 9. We observe that as the flexibility increases, more of
the energy is consumed during the price valley.

VIII. CONCLUSION

The resource task network models are derived and investi-
gated in this paper to study the scheduling problem of steel
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Fig. 9: Hourly energy consumptions for scheduling 12 heats.

plants with flexible EAFs. The objective for the scheduling
problem is to minimize energy cost according to the electricity
market signals by arranging its load curve, which not only
lowers the plants’ operation cost but also helps the power grid
to mitigate the pressure of supplying the peak demand. Both
of the Multiple Melting Modes and Arbitrary Flex Melting
proposed in this paper enable the steel plants to participate
more actively in the electricity market by exploiting the EAFs’
capability to adjust their power consumption rate through
controlling the OLTCs. Moreover, the numerical analysis of
a typical steel plant demonstrates remarkable savings and
could encourage the steel plants to participate more actively
in the smart grid. as demand response resource. The pro-
posed approach helps steel manufacturing loads to optimize
their demand response participation therefore encourages the
industrial load to be more active in demand response. With the
help of this approach and similar methods targeting different
industrial loads, we expect more active participation from the
industrial loads and more interaction between the supply and
demand sides in the smart grid.

Extended from the Basic RTN which optimizes the sched-
ule merely through arranging the time and sequence of the
tasks, the Multiple Melting Modes model enables controlling
the transformers at the beginning of each EAF task, while
the Arbitrary Flex Melting model allows the control of the
transformers at every time slot within the EAF task. The
Multiple Melting Modes model provides a good trade-off
between enabling the exploitation of the flexibilities given by
the OLTCs and computational complexity. The computation
of the Arbitrary Flex Melting model is still difficult which
remains as a problem to be solved in future research; more
efficient modeling and parallel computing will be considered
to alleviate the computational burden. We are also interested
to combine the presented analysis with electricity price pre-
diction methods and to take into account the impacts of price
uncertainties. Besides, the models proposed in this paper
can be extended to investigate the steel plants’ participation
in electricity ancillary service markets as spinning reserve
provider. Practical concerns including the benefit-cost analysis
of implementing the optimal scheduling, the degradation of the
OLTCs from switching actions, the quality of the final steel
products will also be studied in our future research.
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